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Logic Restructuring Using Node
Addition and Removal

Yung-Chih Chen and Chun-Yao Wang, Member, IEEE

Abstract—This paper presents a logic restructuring technique
named node addition and removal (NAR). It works by adding
a node into a circuit to replace an existing node and then
removing the replaced node. Previous node-merging techniques
focus on replacing one node with an existing node in a circuit,
but fail to replace a node that has no substitute node. To
enhance the node-merging techniques on logic restructuring and
optimization, we propose an NAR approach in this paper. We
first present two sufficient conditions that state the requirements
of added nodes for safely replacing a target node. Then, an
NAR approach is proposed to quickly detect the added nodes
by performing logic implications based on these conditions. We
apply the NAR approach to circuit minimization together with
two techniques: redundancy removal and mandatory assignment
reuse. We also apply it to satisfiability (SAT)-based bounded
sequential equivalence checking (BSEC) to reduce the com-
putation complexity of SAT solving. The experimental results
show that our approach can enhance our prior automatic test
pattern generation-based node-merging approach. Additionally,
our approach has a competitive capability of circuit minimization
with 44 times speedup compared to a SAT-based node-merging
approach. For BSEC, our approach can work together with other
optimization technique to save a total of approximately 39-h
verification time for all the benchmarks.

Index Terms—Logic implication, node addition and removal,
node merging, observability don’t care.

I. Introduction

LOGIC restructuring techniques have been widely devel-
oped during the last 20 years. Popular methodologies like

redundancy addition and removal (RAR) [9]–[13], [17]–[19],
[25], [32], [34], [35], irredundancy removal and addition [24],
automatic test pattern generation (ATPG)/diagnosis-based de-
sign rewiring [31], error cancelation-based rewiring [36], and
rewriting [26] have demonstrated their effectiveness on logic
synthesis and optimization.

Recently, a novel logic restructuring technique named node
merging was proposed and enhanced in [7], [14], [15], [21],
[28], and [37]. This methodology works by merging two
nodes—replacing one node with another node—in a logic
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circuit with don’t cares. When two nodes are functionally
equivalent or their functional differences are never observed
at any primary output (PO), they can be correctly merged. Be-
cause the replaced node can be removed and the replacement
may result in additional redundancies, the resultant circuit is
minimized.

The effectiveness and efficiency of the node-merging tech-
nique for circuit minimization has been shown in the previous
works. The satisfiability (SAT)-based approaches [28], [37]
have a great capability of circuit minimization. As reported
in [37] and [28], an average of 15.6% nodes can be merged
in a benchmark circuit and an average of additional 4.9%
circuit size reduction can be achieved for a benchmark circuit
after optimized by a synthesis engine [3], [26], respectively.
However, the efficiency is a major concern for these SAT-
based approaches due to the expense of observability don’t
care (ODC) computation and SAT solving calls.

On the contrary, our prior ATPG-based approach [14] is
much faster, although its capability of circuit minimization
is not as good as that of the SAT-based approaches. The
experimental results in [14] show that a large benchmark
circuit having more than 70 000 nodes can be optimized in
approximately 1 min.

However, these previous works only focus on searching and
merging two nodes that originally exist in a circuit. They fail
to replace a target node that possesses no substitute node. In
fact, we observe that a target node without any substitute node
could be replaced with a newly added node. That is, we could
add a node into the circuit to replace the target node. For the
objective of circuit optimization, when more than one node is
removed due to the addition of a new node, the circuit size is
reduced as well. We name this technique node addition and
removal (NAR) [16]. Because more nodes can be replaced by
an added node, NAR can enhance the results of node merging
in logic optimization.

In this paper, we extend our prior node-merging technique
[14] to consider NAR and propose an efficient approach by
using logic implications. The approach works based on two
sufficient conditions that state the requirements of added nodes
for correctly replacing a target node. If a given target node
possesses no substitute node from the circuit, the approach
further identifies an added node to replace it. We also apply
the NAR approach to circuit size reduction. Two techniques,
redundancy removal and mandatory assignment (MA) reuse,
are engaged to enhance the performance. Redundancy removal
detects redundant nodes without extra effort when the ap-
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proach identifies substitute nodes. MA reuse is a method for
reusing the logic implication results such that the number of
required logic implications can be saved.

We conduct experiments on a set of IWLS 2005 benchmarks
[38] and compare to the node-merging approaches in [14],
[28], and [37]. For replaceable node identification, as com-
pared to our prior ATPG-based approach [14], an average of
28% more nodes can be identified replaceable in a benchmark
circuit by using NAR. Additionally, an average of 72% of
replaceable nodes cannot be found by the SAT-based node-
merging approach with a bounded depth k = 5 [37], and thus,
the proposed approach could complement it.

For circuit size reduction, the proposed approach reduces
2873 more nodes than our prior ATPG-based node-merging
approach [14] for all the benchmarks, with an overall CPU
time overhead of only 4 min. Additionally, the optimization
capability is competitive with that of the SAT-based node-
merging approach [28], which is highly time-consuming.

Moreover, we apply the proposed method to SAT-based
bounded sequential equivalence checking (BSEC) [8], [30],
[33]. Our method is used as a preprocess to reduce the
computation complexity of SAT solving. Not only the
variable count that the SAT solver deals with is minimized
due to logic optimization but also the relationships among
the variables become tighter by logic restructuring. Thus, the
process of SAT solving could be facilitated. The effectiveness
of the proposed method is compared with a logic optimization
technique resyn2 [26]. The experimental results show that
when we use resyn2 to facilitate SAT-based BSEC, a
total of approximately 25 h are saved for verifying all the
benchmarks. However, when we integrate the proposed
method with resyn2, we can save approximately 39 h.

A related work studying SAT-controlled RAR rather than
NAR is presented in [32]. The work proposes a SAT-based
method for finding redundancies to replace a target wire.
Although the work aims to replace a wire rather than a node,
it also introduces a similar sufficient condition for identifying
an added node to replace a wire. However, the objective of our
paper is different from that of [32]. Additionally, our method
is an ATPG-based approach and is more complete, since we
consider a total of eight types of added nodes. Moreover,
we also propose an efficient NAR-based algorithm for circuit
optimization and SAT-based BSEC facilitation.

The remainder of this paper is organized as follows. Sec-
tion II uses an example to demonstrate the NAR technique and
formulates the problem considered in this paper. Section III
reviews the related concepts in very large-scale integrated
(VLSI) testing and our prior ATPG-based node-merging ap-
proach [14]. Section IV presents the proposed algorithm for
NAR. The application of NAR for circuit size reduction is in-
troduced in Section V. Section VI shows the application of the
NAR method on SAT-based BSEC. Finally, the experimental
results and conclusion are presented in Sections VII and VIII.

II. Example of NAR

We use an example in Fig. 1 to demonstrate the
difference between node merging and NAR. For ease

Fig. 1. Example for demonstrating node merging and NAR. (a) Original
circuit. (b) Resultant circuit of replacing n5 with n6. (c) Resultant circuit of
adding n8. (d) Resultant circuit of replacing n6 with n8.

of discussion, the circuits considered in this paper are
presented as and-inverter graphs (AIGs) [22], which
are an efficient and scalable representation for Boolean
networks. Circuits with complex gates can be handled
by transforming them into AIGs first. In the circuit of
Fig. 1(a), a, b, c, and d are primary inputs (PIs). O1 ∼ O4

are POs, and n1 ∼ n8 are 2-input and gates. Their connec-
tivities are presented by directed edges. A dot marked on an
edge indicates that an inverter (inv) is in between two nodes.

First, let us review the node-merging technique. In Fig. 1(a),
n5 and n6 have different functionalities. However, their values
only differ when n2 = 1 and a = c. Because a = c further
implies n1 = 0, which is an input-controlling value of n7,
the value of n5 is prevented from being observed at O1. This
situation makes the different values of n5 with respect to n6

never observed. Thus, n5 can be replaced with n6 without
altering the overall functionality of the circuit. The resultant
circuit is shown in Fig. 1(b). Here, n5 is considered a target
node and n6 is a substitute node of n5.

Next, let us consider n6 in Fig. 1(b). Suppose n6 is a target
node to be replaced. Because n6 does not have any substitute
node, the node-merging technique fails to replace it. However,
we can add a new node into the circuit to replace it. When we
add n8 into the circuit as shown in Fig. 1(c), the functionality
of the circuit is unchanged, because n8 does not drive any
node. Additionally, n8 can correctly replace n6. The resultant
circuit is shown as Fig. 1(d), where n8 drives n7 and O2.
Here, because n2 only drives n6, when n6 is replaced, n2 can
be removed as well. This example demonstrates that a node
which has no substitute node still can be replaced by a newly
added node, and the resultant circuit can be minimized if the
replaced node has one or more single-fanout fanin (SFoFi)
nodes. Thus, the NAR technique can replace a node which
cannot be replaced by the node-merging technique, and can
optimize a circuit as well. Note that although n6 and n8 are
functionally equivalent (n6 = (b∗d)∗ c = (b∗ c)∗ (d ∗ c) = n8)
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in this example, it does not indicate that the proposed NAR
technique can only identify a functionally equivalent added
node. In fact, the proposed NAR technique can also find a
functionally different added node to replace a target node.

The problem formulation of this paper is as follows. Given
a target node nt in a circuit, find a node na which can correctly
replace nt after it is added into the circuit. Here, we name na

an added substitute node to distinguish it from a substitute
node because na is absent in the original circuit.

III. Preliminaries

A. Background

This section reviews some terminologies used in logic
synthesis and related concepts used in VLSI testing.

An input of a gate g has an input-controlling value of g

if this value determines the output value of g regardless of
the other inputs. The inverse of the input-controlling value
is called the input-noncontrolling value. For example, the
input-controlling value of an and gate is 0 and its input-
noncontrolling value is 1. A gate g is in the transitive fanout
cone (TFO) of a gate gs if there exists a path from gs to g.

The dominators [20] of a gate g are a set of gates G such
that all paths from g to any PO have to pass through all gates
in G. Consider the dominators of a gate g: the side inputs of
a dominator are its inputs that are not in the TFO of g.

In VLSI testing, a stuck-at fault is a fault model used to
represent a manufacturing defect within a circuit. The effect
of the fault is as if the faulty wire or gate were stuck at either 1
(stuck-at 1) or 0 (stuck-at 0). A stuck-at fault test is a process
to find a test which can generate the different output values
in the fault-free and faulty circuits. Given a stuck-at fault f ,
if there exists such a test, f is said to be testable; otherwise,
f is untestable. To detect a stuck-at fault on a wire or gate, a
test needs to activate and propagate the fault effect to a PO. In
a combinational circuit, an untestable stuck-at fault on a wire
or gate indicates that the wire or gate is redundant and can be
replaced with a constant value 0 or 1.

The MAs are the unique value assignments to nodes neces-
sary for a test to exist. Consider a stuck-at fault on a gate g;
the assignments obtained by setting g to the fault-activating
value and by setting the side inputs of dominators of g to
the fault-propagating values are MAs. These assignments can
be further propagated forward or backward to infer additional
MAs by performing logic implications. Computing all MAs
of a stuck-at fault requires an exponential time complexity. To
compute more MAs with reasonable CPU time overhead, a
recursive learning technique [23] with the recursive depth 1
can be used to perform logic implications more completely.
If the MAs of a stuck-at fault on a gate are inconsistent, the
fault is untestable, and therefore, the gate is redundant [29].

B. ATPG-Based Node Merging

Our previous work in [14] presented a node-merging al-
gorithm by using logic implications. It models a node re-
placement as a misplaced-wire error [1]. When the error is
undetectable, the replacement is safe and correct. Based on

TABLE I

Notations Used

Notation Description
nt Target node
ns Substitute node of nt

na Added substitute node of nt

nf1 One fanin node of na

nf2 Other fanin node of na different from nf1

T Set of input patterns
that can detect the stuck-at 1 fault on nt

Tnf1=0 Set of input patterns in T

that generate nf1 = 0
Tnf1=1 Set of input patterns in T

that generate nf1 = 1
imp(A) Set of value assignments logically implied

from a set of value assignments A

MAs(n = sav) Set of MAs for the stuck-at v (v is a
logical value 0 or 1) fault test on a node n

the observation, this paper proposes a sufficient condition, as
presented in Condition 1, that renders a misplaced-wire error
undetectable.

Condition 1 [14]: Let f denote an error of replacing nt

with ns. If ns = 1 and ns = 0 are MAs for the stuck-at 0 and
stuck-at 1 fault tests on nt , respectively, f is undetectable.

When Condition 1 is held, no input pattern that can detect
the error of replacing nt with ns exists. As a result, nt can be
correctly replaced with ns.

Based on Condition 1, the proposed algorithm in [14]
requires only two MA computations to identify the substitute
nodes of a target node nt: one is for computing the MAs of
the stuck-at 0 fault on nt and the other one is for computing
the MAs of the stuck-at 1 fault on nt .

We use the above example in Fig. 1(a) to demonstrate the
algorithm. Suppose n5 is a target node. The MAs of the stuck-
at 0 fault on n5 are {n5 = 1, n1 = 1, n2 = 1, b = 1, d = 1, a = 0,
c = 1, n6 = 1, n3 = 1, n4 = 1, n7 = 1}. These values can be
computed by setting n5 = 1 to activate the fault effect, setting
n1 = 1 to propagate the fault effect, and performing logic
implications to derive additional MAs. On the other hand, the
MAs of the stuck-at 1 fault on n5 are {n5 = 0, n1 = 1, a = 0,
c = 1, n2 = 0, n6 = 0, n7 = 0}. As a result, both n2 and
n6 are the substitute nodes of n5 due to the satisfaction of
Condition 1. Note that although n7 also satisfies Condition
1, it is excluded from being a substitute node of n5. This is
because n7 is in the TFO of n5, and replacing n5 with n7 will
result in a cyclic combinational circuit.

C. Notation

For convenience and concision, we use the notations in
Table I to represent certain objects throughout this paper.

IV. Node Addition and Removal

In this section, we first derive two sufficient conditions for
correctly replacing one node with an added node. Next, we
present a method for finding added substitute nodes based on
these conditions.
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A. Sufficient Conditions for NAR

Because an NAR technique performs node replacement as
the node-merging technique, we can exploit Condition 1 to
check if an added node is an added substitute node. For
example, in Fig. 1(c), n6 is a target node and n8 is a node
added into the circuit. We find n8 satisfies Condition 1 that
n8 = 1 and n8 = 0 are MAs for the stuck-at 0 and stuck-at 1
fault tests on n6, respectively. Thus, we can conclude that n8

is an added substitute node for n6.
However, it is not efficient to add all possible nodes into

the circuit first and then exploit Condition 1 to identify
which are substitute nodes for the target node. Thus, we
transform the problem of finding an added substitute node
into finding its two fanin nodes that are originally in the
circuit.

Our objective now becomes finding two nodes such that
the added node driven by them will satisfy Condition 1. For
convenience, let nt denote a target node and na denote an
added node driven by two nodes nf1 and nf2. For ease of
discussion, we first suppose that na is directly driven by
nf1 and nf2 without any inv in between them. That is, the
functionality of na is nf1∧nf2. Next, we present two sufficient
conditions for such na. Finally, we also extend the sufficient
conditions for all eight different types of added nodes. The
first condition is presented in Condition 2.

Condition 2: If both nf1 = 1 and nf2 = 1 are MAs for
the stuck-at 0 fault test on nt , na = 1 is an MA for the same
test as well.

Because na is nf1 ∧ nf2, {nf1 = 1, nf2 = 1} implies na = 1.
Thus, if both nf1 = 1 and nf2 = 1 are MAs, na = 1 must be
an MA as well by logic implication.

When Condition 2 is held, na satisfies one half of
Condition 1 that na = 1 is an MA for the stuck-at 0 fault test
on nt . Thus, if we can further show that na = 0 is an MA
for the stuck-at 1 fault test on nt , we can conclude that na is
an added substitute node of nt . Based on this idea, the next
sufficient condition as presented in Condition 3 is proposed
to make na satisfy the other half of Condition 1. Here, let
imp(A) denote the set of value assignments logically implied
from a set of value assignments A, and MAs(nt = sav) denote
the set of MAs for the stuck-at v fault test on nt , where v is
a logical value 0 or 1.

Condition 3: If nf2 = 0 is a value assignment in
imp((nf1 = 1) ∪ MAs(nt = sa1)), na = 0 is an MA for the
stuck-at 1 fault test on nt .

To determine whether na = 0 is an MA for the stuck-at 1
fault test on nt , we can check if all the input patterns that can
detect the fault generate na = 0. If so, na = 0 is an MA. Let
T denote the set of input patterns that can detect the stuck-at
1 fault on nt . Based on the value of nf1, we classify T into
two subsets: the first one, Tnf1=0, and the second one, Tnf1=1,
which consist of the patterns generating nf1 = 0 and nf1 = 1,
respectively. Because nf1 = 0 implies na = 0, all patterns in
Tnf1=0 generate na = 0.

As for Tnf1=1, because imp((nf1 = 1) ∪ MAs(nt = sa1)) is
the set of unique value assignments that all patterns in Tnf1=1

generate, if nf2 = 0 is a value assignment in imp((nf1 = 1) ∪

Fig. 2. Eight different types of added substitute nodes and their correspond-
ing sufficient conditions. (a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.
(e) Type 5. (f) Type 6. (g) Type 7. (h) Type 8.

MAs(nt = sa1)), all patterns in Tnf1=1 must generate nf2 = 0,
which implies na = 0. As a result, when Condition 3 is held,
each pattern in T generates na = 0, and na = 0 is an MA for
the stuck-at 1 fault test on nt .

In summary, when Conditions 2 and 3 are held simultane-
ously, na = 1 and na = 0 are MAs for the stuck-at 0 and
stuck-at 1 fault tests on nt , respectively, and na is an added
substitute node of nt .

Note that none of nf1 and nf2 represents a particular fanin
node of na. When one fanin node of na is determined as
nf1, the other fanin node is nf2. Thus, although nf1 = 0 ∈
imp((nf2 = 1) ∪ MAs(nt = sa1)) is also a sufficient condition
for na = 0 to be an MA for the stuck-at 1 fault test on nt , we
do not state it in Condition 3. We ignore it by always selecting
the node having a value 1 as nf1.

B. Types of Added Substitute Nodes

In the last section, we suppose that an added node is directly
driven by two nodes without any inv in between them, and
then derive Conditions 2 and 3. In fact, these conditions can
be modified by reversing the values of nf1, nf2, or the stuck-at
fault for different types of added substitute nodes. We present
eight types of added substitute nodes and their corresponding
sufficient conditions in Fig. 2.

For example, Type 1 is the original added node we consider
before. By reversing the value of nf1 in Conditions 2 and 3,
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Fig. 3. Algorithm for finding added substitute nodes.

we have Type 2, na equals ¬nf1 ∧nf2. Similarly, if we reverse
the value of nf2, we have Type 3, na equals nf1 ∧ ¬nf2. For
Type 4, na equals ¬nf1 ∧ ¬nf2, we reverse the values of nf1

and nf2 simultaneously. For Types 5–8, they are corresponding
to Types 1–4, respectively. We reverse the stuck-at fault values
in Types 1–4 to obtain Types 5–8.

In this paper, the proposed algorithm will consider all these
possible added substitute nodes when performing NAR.

C. NAR Algorithm

Given a target node nt , we exploit Conditions 2 and 3 to find
its added substitute nodes. Based on Condition 2, we always
select a MA in MAs(nt = sav) as a candidate nf1, and then use
the nf1 and Condition 3 to find nf2. The proposed algorithm is
shown in Fig. 3. In the first two steps, the algorithm computes
MAs(nt = sa0) and MAs(nt = sa1), respectively. In step 3, the
algorithm starts to find the added substitute nodes of Types
1–4. It iteratively selects an MA n = v from MAs(nt = sa0)
and sets nf1 to n. Then, it computes imp((nf1 = v)∪MAs(nt =
sa1)) by performing logic implications of nf1 = v associated
with MAs(nt = sa1). Finally, the nodes that have different
values in MAs(nt = sa0) and imp((nf1 = v) ∪ MAs(nt = sa1))
can be nf2. Thus, in step 4, the nodes that driven by nf1 and
nf2 are the added substitute nodes of Types 1–4. In steps 5
and 6, the algorithm uses a similar method to find the added
substitute nodes of Types 5–8.

Note that the algorithm in Fig. 3 is designed to find all
added substitute nodes. If the objective is to identify one added
substitute node or check if a target node is replaceable, we
can terminate the algorithm once it finds an nf1 and nf2 pair.
Additionally, we will ensure that an added substitute node is
not in the TFO of the target node and has at least one different
fanin node from that of the target node.

We use the example in Fig. 1 to demonstrate the algorithm.
Let us consider finding an added substitute node of n6 in the
circuit of Fig. 1(b). First, we compute the MAs for the stuck-
at 0 fault on n6. To activate the fault effect, n6 is set to 1.
We then perform logic implications to derive additional MAs.
They are n2 = 1, c = 1, b = 1, d = 1, n3 = 1, and n4 = 1. Thus,
MAs(nt = sa0) includes {n6 = 1, n2 = 1, c = 1, b = 1, d = 1,
n3 = 1, n4 = 1}. Second, we use the same method to compute
the MAs for the stuck-at 1 fault on n6. They are {n6 = 0,

Fig. 4. Rules for MA reuse. (a) MAs(n = sa0) = MAs(nd = sa0).
(b) MAs(n = sa1) = MAs(nd = sa0).

n7 = 0}. Third, suppose we select n3 as nf1 and compute
imp((n3 = 1) ∪ MAs(n6 = sa1)). The implication results have
{n6 = 0, n7 = 0, n3 = 1, b = 1, c = 1, n2 = 0, d = 0, n4 = 0}.
Finally, n2, d, and n4 all can be nf2 due to the satisfaction of
Conditions 2 and 3. If we select n4 as nf2, n8 driven by n3

and n4 is an added substitute node of n6 as shown in Fig. 1(c).

V. Circuit Size Reduction

In this section, we present an NAR-based algorithm for
circuit size reduction. Our prior node-merging technique [14]
is also included in the algorithm to quickly replace a node
having a substitute node. In addition, two techniques, redun-
dancy removal and MA reuse, are engaged to enhance the
performance of the algorithm.

A. Node Merging

As mentioned in Section III-B, our prior ATPG-based
node-merging approach [14] only requires MAs(nt = sa0)
and MAs(nt = sa1) to find substitute nodes. Because the
proposed NAR algorithm also computes MAs(nt = sa0) and
MAs(nt = sa1) as shown in Fig. 3, we can combine the node-
merging approach with the NAR algorithm for circuit size
reduction. Given a target node, after computing MAs(nt = sa0)
and MAs(nt = sa1), we use the node-merging approach to find
its substitute nodes for replacement. If there is no substitute
node, we continue to find its added substitute nodes. This
method saves the effort of finding an added substitute node
when there is a substitute node.

B. Redundancy Removal

As mentioned in Section III-A, MAs are the unique value
assignments to nodes necessary for a test to exist. Given a
stuck-at fault on a node, when the MAs are inconsistent,
the fault is untestable and the node is redundant. The NAR
algorithm computes MAs(nt = sa0) and MAs(nt = sa1),
and hence can simultaneously find untestable faults. Once we
find the assignments in MAs(nt = sa0) are inconsistent, we
replace nt with a constant value 0 and use 0 to drive all the
wires originally driven by nt . Similarly, if the assignments in
MAs(nt = sa1) are inconsistent, we replace nt with a constant
value 1. Thus, for circuit size reduction, we can identify these
redundancies and remove them without extra effort.

C. MA Reuse

MA reuse is a method to reuse the computed MAs such that
the number of performed logic implications can be reduced
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Fig. 5. Algorithm for computing MAs with MA reuse.

and the optimization process is accelerated. The idea comes
from the concept of fault collapsing [2] that two equivalent
stuck-at faults have the same test set. Based on this concept,
when two stuck-at faults are equivalent, their corresponding
MAs are identical as well. Thus, only one MA computation is
required for them. Here, we simply derive two rules for MA
reuse as shown in Fig. 4.

First, consider computing MAs(nd = sa0) in Fig. 4(a). To
activate the fault effect, nd is set to 1. To propagate the fault
effect, the side inputs of dominators of nd are set to their
corresponding input-noncontrolling values. For simplicity, we
use P to denote these fault-propagating assignments. Then,
MAs(nd = sa0) can be obtained by performing a logic
implication of {nd = 1, P}. They are {nd = 1, n = 1, nj = 1,
imp(P)}. Next, consider computing MAs(n = sa0). n = 1 is
the fault-activating assignment. Because n drives only nd , the
dominators of nd and nd itself are dominators of n. Thus, the
fault-propagating assignments are {nj = 1, P}. MAs(n = sa0)
then can be obtained by performing a logic implication of
{n = 1, nj = 1, P}. They are {nd = 1, n = 1, nj = 1,
imp(P)}, which are identical to MAs(nd = sa0). Thus, when
we compute MAs(n = sa0), we can reuse MAs(nd = sa0).
Based on the same method, we also find that MAs(n = sa1)
equals to MAs(nd = sa0) in Fig. 4(b).

According to these two rules, for each node nd , only
MAs(nd = sa0) could be reused. Additionally, it is reused
when nd has a fanin node n which drives only nd .

Fig. 5 shows the algorithm for computing the MAs of the
stuck-at v fault on a node n with MA reuse. If n drives more
than one node, the algorithm directly computes MAs(n = sav).
On the other hand, if n drives only one node nd , the algorithm
then checks whether v equals Compl(nd , n). Here, Compl(nd ,
n) returns 1 if there is an inv between n and nd ; otherwise,
it returns 0. When v does not equal Compl(nd , n), the
algorithm computes MAs(n = sav) as well. However, if v

equals Compl(nd , n), the algorithm reuses MAs(nd = sa0)
and MAs(n = sav) equals MAs(nd = sa0).

D. Overall Algorithm

During the optimization process, each node in a circuit is
considered a target node, one at a time. We first find the
target node’s substitute nodes for replacement using the node-
merging technique [14]. However, if there is no substitute
node, we then consider performing NAR. In order to ensure
that each node replacement can reduce the circuit size, we
only perform NAR for the target nodes that have a fanin node

Fig. 6. Overall algorithm for circuit size reduction.

driving only one node. In this situation, when the target node
is replaced, the fanin node can be removed as well. Thus,
adding one node removes at least two nodes.

As for the optimization order, although the orders of select-
ing a target node, a substitute node, and an added substitute
node can significantly affect the optimization results, it is
difficult to evaluate the most effective optimization order.
Additionally, this evaluation process might be time-consuming
or fruitless. Thus, in this paper, we follow the optimization
order of selecting a target node and a substitute node used
by the node-merging algorithm in [14] for fair comparison. A
target node is selected from POs to PIs in the depth-first search
(DFS) order and is replaced with a substitute node that is
closest to PIs. Additionally, we replace a target node once we
find an added substitute node due to the inefficiency of finding
all added substitute nodes. When we search an added substitute
node, each MA node is selected as nf1 in a topological order
to identify the nf2 that is closest to PIs.

Fig. 6 shows the overall algorithm for circuit size reduction.
Given a circuit C, the algorithm iteratively selects a target
node nt in the DFS order from POs to PIs and replaces it if
applicable. At each iteration, in step 1, the algorithm computes
MAs(nt = sa0). If the MAs are inconsistent, it replaces nt with
0 and continues to consider the next target node. Otherwise,
if nt has a fanin node that drives only nt , the algorithm stores
the computed MAs(nt = sa0) for further reuse. Next, in step 2,
the algorithm computes MAs(nt = sa1). Similarly, if the MAs
in MAs(nt = sa1) are inconsistent, it replaces nt with 1 and
continues to consider the next target node. Otherwise, the
algorithm starts to find substitute nodes.
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Fig. 7. (a) Miter. (b) BSEC model.

In step 3, the nodes that have the different values in
MAs(nt = sa0) and MAs(nt = sa1) are the substitute nodes of
nt . The algorithm selects one substitute node which is closest
to PIs to replace nt and continues to consider the next target
node. However, if nt has no substitute node, the algorithm
starts to perform NAR when nt has one fanin node which
drives only nt . In steps 6–8, the algorithm finds an added
substitute node to replace nt by using the method presented
in Fig. 3.

VI. SAT-Based BSEC Facilitation

SAT-based BSEC is a special case of bounded equivalence
checking [4]–[6]. As shown in Fig. 7(a), two sequential
circuits, P and Q, to be checked are first constructed as a miter
by connecting their corresponding POs with additional xor

gates and connecting these xor gates to an or gate. Then,
the miter is unfolded to a bounded depth k of timeframes, and
all the inserted or gates of each timeframe are connected to
an additional or gate as shown in Fig. 7(b). Finally, the output
value of the or gate determines the equivalence of P and Q

within the bounded depth k. If the value is 1, it means P and
Q are nonequivalent. This is because there exists at least one
input pattern that produces different output values on one pair
of the POs of P and Q within k timeframes.

To determine whether or not P and Q are equivalent within
k timeframes, the BSEC model can be transformed into a
conjunctive normal form (CNF), and then be solved by using
a SAT solver. When the answer is unsatisfiable, the output
of the or gate is a constant 0, and P and Q are equivalent;
otherwise, they are nonequivalent.

However, as the bounded depth increases, the variable count
and the size of the constructed CNF grow as well, making the
SAT solving problem become computationally inefficient. To
reduce the complexity, performing logic optimization before
SAT solving is one of the effective methods. Additionally,
modifying the variable relationships by logic restructuring
could be a possible solution to speedup SAT solving, espe-
cially when the answer is unsatisfiable. This is because an
unsatisfiable result means there exists at least one variable
conflict in the CNF. How fast a SAT solver can detect a conflict
determines the required solving time. Thus, if we can make
it be detected more easily by changing variable relationships,
the SAT solving can be facilitated.

We use the example in Fig. 1 to demonstrate our motivation.
Suppose the circuit in Fig. 1(b) is a part of a BSEC model,

Fig. 8. Optimized BSEC model.

and n7 = 1 and n4 = 0 are the sources that cause a conflict
in it. To detect this conflict, a SAT solver may need to learn
that n7 = 1 implies n6 = 1, n6 = 1 implies c = 1 and n2 = 1,
n2 = 1 implies d = 1, and then c = 1 and d = 1 imply n4 = 1.
However, if we add n8 into the circuit and use it to replace
n6 as shown in Fig. 1(d), then the SAT solver only needs to
learn that n7 = 1 implies n8 = 1, and n8 = 1 implies n4 = 1,
to detect this conflict. As a result, the SAT solving process is
accelerated.

In a BSEC model, the conflict sources may come from
different circuits under equivalence checking and distribute at
different timeframes. The NAR and node-merging techniques
could make their relationships tighter by adding a new node
driven by two nodes locating at different timeframes, and
merging two nodes locating at different timeframes as well.
For example, Fig. 8 demonstrates our intent. The dotted lines
can be considered the new relationships constructed by node
merging and NAR, which further tighten the variable relation-
ships as compared to the original BSEC model. Additionally,
the BSEC model size is minimized. Thus, the computation
complexity of SAT solving could be reduced.

The proposed optimization flow for a BSEC model is as fol-
lows. After constructing a miter for two circuits under equiv-
alence checking, we first optimize its combinational portion.
Next, we unfold the simplified miter and construct a BSEC
model. Again, we optimize the BSEC model. Here, the (added)
substitute node that is farther from the target node in terms of
the number of timeframes has a higher priority to be selected
to replace the target node. Finally, the simplified BSEC model
is transformed into a CNF and solved by a SAT solver.

VII. Experimental Results

We implemented our algorithm in C language within an
ABC [3] environment. The experiments were conducted on a
3.0 GHz Linux platform (CentOS 4.6). The benchmarks are
from the IWLS 2005 suite [38]. Each benchmark is initially
transformed to an AIG and we only consider its combinational
portion. Additionally, to balance quality and efficiency, the
recursive learning technique [23] is applied with the recur-
sion depth 1 in the algorithms. The experimental setup and
parameters are the same with that in [14] for fair comparison.

The experimental results consist of three parts. The first
one shows the logic restructuring capability of the proposed
approach combining the node-merging and the NAR tech-
niques. The second one shows the efficiency and effectiveness
of the proposed approach for circuit size reduction. The third
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TABLE II

Experimental Results of Finding Replaceable Nodes by Using

the Node-Merging Approach [14] and Our Approach

Benchmark N
[14] Our Approach

Repl. T (s) Repl. T (s) Impr. k > 5 SFoFi

C3540 1038 2.8 0.3 31.6 0.5 28.8 96.3 13.9

rot 1063 4.0 0.2 36.1 0.3 32.1 83.6 29.9

simple−spi 1079 2.4 0.1 21.7 0.3 19.3 74.8 15.4

i2c 1306 6.1 0.2 40.4 0.5 34.3 65.9 29.0

pci−spoci−ctrl 1451 11.7 0.6 43.4 1.5 31.7 59.7 31.9

dalu 1740 12.5 1.0 50.9 3.1 38.4 60.2 25.5

C5315 1773 1.9 0.2 15.7 0.3 13.8 66.7 16.7

s9234 1958 8.9 0.4 42.2 0.7 33.3 82.7 16.1

C7552 2074 2.9 0.4 33.3 0.7 30.4 71.3 15.8

C6288 2337 0.1 0.5 39.9 1.4 39.8 99.8 0.0

i10 2673 23.4 1.4 55.9 2.8 32.5 55.9 43.0

s13207 2719 5.8 0.6 32.8 1.7 27.0 78.0 19.6

systemcdes 3190 4.6 1.5 42.5 2.6 37.9 75.1 21.3

i8 3310 46.3 3.8 76.2 7.2 29.9 37.5 57.9

spi 4053 1.6 3.4 23.4 6.6 21.8 88.4 11.2

des−area 4857 1.6 5.6 18.3 13.3 16.7 87.1 17.3

alu4 5270 3.9 54.9 54.1 83.6 50.2 80.1 61.2

s38417 9219 1.9 1.5 25.2 2.4 23.3 84.7 12.4

tv80 9609 5.2 17.2 35.5 41.6 30.3 75.5 15.9

b20 12 219 6.9 17.3 36.2 34.6 29.3 59.4 11.3

s38584 12 400 4.4 17.0 35.4 66.2 31.0 87.4 13.1

b21 12 782 8.6 19.3 41.1 39.5 32.5 54.8 10.6

systemcaes 13 054 1.5 17.7 22.1 36.8 20.6 96.7 8.5

ac97−ctrl 14 496 0.7 3.2 9.9 7.5 9.2 85.2 7.8

mem−ctrl 15 641 9.8 98.8 22.0 178.0 12.2 22.9 22.9

usb−funct 15 894 2.3 6.3 21.6 16.7 19.3 62.6 14.0

b22 18 488 5.7 25.0 35.1 53.8 29.4 62.6 10.4

aes−core 21 513 2.1 15.2 37.5 39.9 35.4 90.6 9.2

pci−bridge32 24 369 1.3 21.7 15.2 47.2 13.9 86.0 8.2

wb−conmax 48 429 11.6 28.2 27.9 116.0 16.3 37.5 33.3

b17 52 920 3.0 174.5 33.0 533.8 30.0 48.7 9.6

des−perf 79 288 3.2 51.4 43.4 82.7 40.2 86.3 20.2

Average 6.5 34.4 27.8 72.0 19.8

Total 589.3 1423.7

Ratio 1 5.26

one shows the effectiveness of the proposed approach on
facilitating SAT-based BSEC.

A. Replaceable Node Identification

In the experiments, we compare the proposed approach
with our prior node-merging approach [14]. Each node in
a benchmark is considered a target node one at a time. We
separately use the node-merging approach and the proposed
approach to check how many nodes in a benchmark are
replaceable. A node is considered replaceable if it has a
substitute node or an added substitute node. Given a target
node, the proposed approach first finds its substitute nodes.
If the proposed approach fails to do so, it further finds
the added substitute nodes. Additionally, to demonstrate that
the proposed approach could complement the local ODC-
based node-merging approach [37], we measure how many
replaceable nodes that the local ODC-based node-merging
approach with a bounded depth k = 5 cannot find.

Table II summarizes the experimental results. Column 1
lists the benchmarks. Column 2 lists the number of nodes in

each benchmark represented as an AIG N. Columns 3 and
4 list the results of our prior node-merging approach. They
are the percentage of the number of replaceable nodes with
respect to N, and the CPU time T , respectively. Columns 5
and 6 list the corresponding results of the proposed approach.
Column 7 shows the improvements of the proposed approach
on the percentage of replaceable nodes. Let Nrep−k>5 denote
the number of replaceable nodes that cannot be found by the
reimplemented local ODC-based node-merging approach with
a bounded depth k = 5. Column 8 lists the percentage of
Nrep−k>5 with respect to the number of replaceable nodes. Ad-
ditionally, let Nrep−k>5−SFoFi denote the number of replaceable
nodes in Nrep−k>5 that have at least one SFoFi node. Column 9
lists the percentage of Nrep−k>5−SFoFi with respect to Nrep−k>5.
When a node having a SFoFi node is replaced, the fanin node
can be removed as well. Thus, the resultant circuit is reduced,
even though we add one node into the circuit.

For example, the benchmark C3540 has 1038 nodes. Our
prior node-merging approach found substitute nodes for 2.8%
of nodes with a CPU time of 0.3 s. The proposed approach
found that 31.6% of nodes have substitute nodes or added
substitute nodes with a CPU time of 0.5 s. Thus, the pro-
posed approach can find 28.8% more replaceable nodes.
Additionally, 96.3% replaceable nodes cannot be found by the
reimplemented local ODC-based node-merging approach with
a bounded depth k = 5. Among these nodes, 13.9% of them
have at least one SFoFi node.

According to Table II, our prior node-merging approach
can find substitute nodes for an average of 6.5% of nodes
in a benchmark. The overall CPU time for all benchmarks is
589.3 s. As for the proposed approach, it can find substitute
nodes or added substitute nodes for an average of 34.4% of
nodes in a benchmark. The overall CPU time is 1423.7 s.

As compared with our prior node-merging approach, the
proposed approach can find more replaceable nodes with a
reasonable CPU time overhead. The average number of re-
placeable nodes is 27.8% more with a ratio 5.26, and the CPU
time overhead is only 834.4 s for all benchmarks. Because the
proposed approach identifies much more replaceable nodes,
it has a better logic restructuring capability than that of the
node-merging approach.

Additionally, an average of 72.0% of the replaceable nodes
that identified by the proposed approach cannot be found by
the reimplemented local ODC-based node-merging approach
with a bounded depth k = 5. An average of 19.8% of these
nodes have at least one SFoFi node. Thus, it can be expected
that the proposed approach could complement the local ODC-
based node-merging approach [37]. They could work together
to obtain a better quality.

B. Circuit Size Reduction

In the experiments, we compare the proposed approach
with our prior ATPG-based node-merging approach [14] as
well as the SAT-based node-merging approach [28] for circuit
size reduction. To have a fair comparison with the SAT-based
node-merging approach, which focuses on post-synthesis opti-
mizations, we initially optimize each benchmark by using the
resyn2 script in the ABC package as performed by [28], which
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TABLE III

Experimental Results of Circuit Size Reduction by Using the

Approaches in [14], [28], and Our Approach

Benchmark N
[28] [14] Our Approach

% T (s) Nr % T (s) Nr % T (s)

pci−spoci−ctrl 878 9.2 6 782 10.9 0.2 757 13.8 0.4

i2c 941 3.2 3 923 1.9 0.1 894 5.0 0.2

dalu 1057 12.0 10 985 6.8 0.3 979 7.4 0.5

C5315 1310 0.7 2 1304 0.5 0.1 1297 1.0 0.1

s9234 1353 1.2 8 1331 1.6 0.2 1323 2.2 0.2

C7552 1410 3.4 8 1371 2.8 0.3 1356 3.8 0.3

i10 1852 1.3 12 1755 5.2 0.6 1742 5.9 1.0

s13207 2108 1.8 17 2063 2.1 0.5 2043 3.1 0.8

alu4 2471 22.9 64 1941 21.5 5.3 1878 24.0 9.9

systemcdes 2641 4.7 9 2600 1.6 0.9 2580 2.3 1.2

spi 3429 1.3 84 3411 0.5 2.7 3383 1.3 5.6

tv80 7233 7.1 1445 6960 3.8 10.6 6813 5.8 20.3

s38417 8185 1.0 275 8136 0.6 1.2 8105 1.0 1.5

mem−ctrl 8815 18.0 738 7334 16.8 7.8 7318 17.0 14.8

s38584 9990 0.8 223 9846 1.4 11.4 9836 1.5 15.1

ac97−ctrl 10 395 2.0 188 10 379 0.2 2.0 10 364 0.3 3.1

systemcaes 10 585 3.8 360 10 521 0.6 13.1 10 386 1.9 30.7

usb−funct 13 320 1.4 681 13 026 2.2 5.9 12 868 3.4 11.4

pci−bridge32 17 814 0.1 1134 17 729 0.5 12.0 17 599 1.2 19.7

aes−core 20 509 8.6 1620 20 371 0.7 13.2 20 195 1.5 22.7

b17 34 523 1.6 5000 33 979 1.5 72.4 33 204 3.8 205.5

wb−conmax 41 070 6.2 5000 39 266 4.4 31.9 38 880 5.3 48.4

des−perf 71 327 3.7 5000 70 081 1.8 62.6 69 421 2.7 84.7

Average 5.0 3.9 5.0

Total 21 887 266 094 255.3 263 221 498.1

Ratio 43.94 0.51 1

performs local circuit rewriting optimization [26]. Note that
although we have the same initialization, the initial number
of nodes in each benchmark is still a little different from that
reported in [28]. The reason might be that the structures of
the original benchmarks are not completely identical.

After the initialization, we separately optimize each bench-
mark by using the proposed approach as shown in Fig. 6
and our prior ATPG-based node-merging approach. Finally,
we also apply an equivalence checking tool, cec [27], in the
ABC package to verify the correctness of the optimization.

Table III summarizes the experimental results. Columns 1
and 2 list the benchmarks and the number of nodes in each
benchmark represented as an AIG, respectively. Columns 3
and 4 list the results of the SAT-based node-merging approach
reported in [28], the percentage of circuit size reduction in
terms of node count and the CPU time, respectively. The
maximal CPU time in Column 4 is 5000 s, which is the CPU
time limit set by the work. Columns 5–7 list the results of our
prior ATPG-based node-merging approach. They contain the
number of nodes in each resultant benchmark Nr, the percent-
age of circuit size reduction, and the CPU time, respectively.
Columns 8–10 list the corresponding results of the proposed
approach.

The experimental results in Table III show that the proposed
approach is 43.94 times faster than the SAT-based node-
merging approach and has a competitive capability of circuit
size reduction. Additionally, the capability is better than that
of our prior ATPG-based node-merging approach by saving

TABLE IV

Comparison of Experimental Results Among (Ours + resyn2) × 3,

resyn2 × 6, and Ours × 6

(Ours + resyn2) × 3 resyn2 × 6 Ours × 6

% T (s) % T (s) % T (s)

Average 8.6 4.3 5.9

Total 1453.1 157.1 2691.2

TABLE V

Experimental Results of SAT-Based BSEC Facilitation

Benchmark FFs k
Original Opti. by resyn2 Opti. by (resyn2+Ours)

Total SAT Total Saved SAT Total Saved

b04 132 12 1615.7 10.3 10.9 1604.8 0.1 3.8 7.1

ss. 174 48 2947.8 353.6 356.2 2591.5 0.3 63.3 292.9

usb. 196 40 2627.2 972.1 975.0 1652.2 89.1 164.9 810.1

simple. 264 30 36000.0 1610.0 1615.6 34384.4 213.7 355.1 1260.5

s5378 328 26 1224.8 265.3 269.9 954.9 84.7 140.7 129.2

syst. 380 10 36000.0 36000.0 36000.0 0.0 120.0 358.2 35641.8

s9234 422 19 2570.6 329.0 333.1 2237.5 21.8 47.5 285.6

b22 1470 5 22943.4 796.6 801.8 22141.7 224.5 310.6 491.2

aes. 1060 5 36000.0 12204.6 12222.9 23777.1 182.7 677.5 11545.4

Total 141929.5 52541.5 52585.4 89344.1 936.9 2121.6 50463.8

2873 more nodes for all the benchmarks. The overall CPU
time overhead is only 242.8 s.

Because the proposed approach is highly efficient, we think
it could be used as a preprocess to optimize a circuit before
applying the SAT-based node-merging approach.

Moreover, to demonstrate the feasibility of combining our
approach with other technique for circuit size optimization,
we optimize the benchmarks listed in Table III by repeatedly
using our approach followed by the resyn2 script three times—
(Ours+resyn2)×3. The average circuit size reduction is 8.6%
and the CPU time is 1453.1 s. However, if we optimize
these benchmarks by repeatedly using the resyn2 script six
times—resyn2×6, the average circuit size reduction is only
4.3% with a CPU time of 157.1 s. In addition, the average
circuit size reduction is 5.9% and the CPU time is 2691.2 s
by repeatedly using our approach six times—Ours×6. The
experimental results are summarized in Table IV. According
to the experimental results, we find that the efficiency and the
logic restructuring capability of our approach can make the
integration of our approach and other optimization techniques,
such as resyn2, possible.

C. SAT-Based BSEC Facilitation

In the experiments, we focus on verifying two functionally
equivalent circuits. Each benchmark is first optimized by using
the resyn2 script, and then it is connected to its original one
as a miter for equivalence checking. After constructing the
miter, we unfold it to a bounded depth k to form a BSEC
model. Finally, we use the SAT solver, MiniSat [39], to solve
the BSEC model and measure the CPU time. For comparison,
we also execute two different optimization procedures. In the
first procedure, we use the resyn2 script to optimize the miters
and then the BSEC models. In the second procedure, we use
the resyn2 script followed by our approach to optimize the
miters and then the BSEC models. The second procedure is
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used to demonstrate that our approach can work together with
the resyn2 script to obtain a better quality. Finally, we also
measure the spent CPU time by the SAT solver for solving
these optimized BSEC models.

The experimental results are summarized in Table V.
Columns 1 and 2 list the benchmarks and the number of flip-
flops (FFs) in each benchmark, respectively. Column 3 lists
the bounded unfolding depth k. Column 4 lists the spent CPU
time by the SAT solver for solving an original BSEC model.
The CPU time limit is 36 000 s. Columns 5–7 list the results
of using the resyn2 script to optimize the BSEC models. They
are the spent CPU time for SAT solving, the total CPU time,
and the saved CPU time compared to the CPU time shown
in Column 4. Columns 8–10 list the corresponding results of
using the resyn2 script followed by our approach to optimize
the BSEC models. Here, the saved CPU time is compared to
the total CPU time shown in Column 6.

For example, the benchmark b04 has 132 FFs. The SAT
solver spent 1615.7 s to solve its BSEC model which is
unfolded to 12 timeframes. When we optimized the BSEC
model by using the resyn2 script, the SAT solver spent 10.3 s
to solve it, and the total CPU time is 10.9 s. Thus, we
saved 1604.8 s (1615.7 − 10.9 = 1604.8). However, when
we optimized the BSEC model by using the resyn2 script
followed by our approach, the SAT solver spent only 0.1 s
and the total CPU time is 3.8 s. Thus, we further saved 7.1 s
(10.9 − 3.8 = 7.1).

The experimental results show that logic optimization and
restructuring could be a preprocess before SAT-based BSEC
for reducing the verification complexity. When using the
resyn2 script to optimize BSEC models, we can save a
total of 89344.1 s (approximately 25 h) for all the bench-
marks. Furthermore, when using our approach to complement
the resyn2 script, we can further save a total of 50463.8 s
(approximately 14 h) for all the benchmarks. Additionally, the
time overhead of the BSEC model optimization is less than
20 min (2121.6 − 936.9 = 1184.7). Thus, although the resyn2
script is effective for most of the benchmarks, our approach
can be combined with it to achieve a better speedup.

VIII. Conclusion

In this paper, we proposed an ATPG-based NAR approach
that can efficiently find an added node to replace a node in
a circuit. The NAR approach can replace a target node that
a node-merging approach cannot handle, thus enhancing the
capability of circuit restructuring.

We also proposed an efficient algorithm for circuit size
reduction based on the NAR approach. The techniques of
redundancy removal and MA reuse were engaged to make the
algorithm more efficient and effective. Moreover, we applied
the algorithm to facilitate SAT-based BSEC by reducing the
computation complexity.

The experimental results showed that the proposed algo-
rithm enhanced our prior ATPG-based node-merging approach
and could complement a SAT-based node-merging approach.
Additionally, it has a competitive capability of circuit size re-
duction and expends much less CPU time compared to another
SAT-based node-merging approach. The experimental results

also showed that the proposed algorithm can be integrated
with other optimization technique to obtain a better circuit
size reduction. For SAT-based BSEC, the proposed algorithm
can work together with other optimization technique to save
much equivalence checking time for all the benchmarks. All
these results showed the efficiency and effectiveness of the
proposed approach.
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